简要描述:德国balluff巴鲁夫传感器常见故障异常
在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方波信号u01’和u02’。光栅正向移动时u01超前u0290度,反向移动时u
产品目录
德国balluff巴鲁夫传感器常见故障异常
在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方波信号u01’和u02’。光栅正向移动时u01超前u0290度,反向移动时u02超前u0190度,故通过电路辨相可确定光栅运动方向。
细分技术
随着对测量精度要求的提高,以栅距为单位已不能满足要求,需要采取适当的措施对莫尔条纹进行细分。所谓细分就是在莫尔条纹信号变化一个周期内,发出若干个脉冲,以减少脉冲当量。如一个周期内发出n个脉冲,则可使测量精度提高n备,而每个脉冲相当于原来栅距的1/n。由于细分后计数脉冲频率提高了n倍,因此也称n倍频。
通常用的有两种细分方法:其一、直接细分。在相差1/4莫尔条纹间距的位置上安放两个光电元件,可得到两个相位差90o的电信号,用反相器反相后就得到四个依次相差90o的交流信号。同样,在两莫尔条纹间放置四个依次相距1/4条纹间距的光电元件,也可获得四个相位差90o的交流信号,实现四倍频细分。其二、电路细分。
四倍频集成电路同时具有辨相和四倍频细分的功能,可将两路正交的方波进行四倍频后产生两路加、减计数信号,可送双时钟可逆计数器进行加、减计数,也可直接送微型计算机(包括单片机)进行数据处理。
1、特点:
⑴、数字化微分电路:4路微分信号脉宽由主频周期决定,因此,是*的,而且可在很大范围里方便地选择。
⑵、临界报警与过速报警两档速度提示:可在光栅运动速度接近极限值时给出临界报警信息,以便操作者及时控制光栅运动快慢。在速度超过极限值时本电路将给出出错信息。
⑶、零位控制:零位的设置将给操作者带来许多方便,如故障断电后的重新定位等。本电路有“到零位开始计数”和“到零位停止计数”,以及“与零位无关”三种工作模式。
⑷、片选:本电路设有片选端,可以构成多标数显系统。
⑸、coms工艺:输入输出的电压电流与4000系列cmos及lsttl电路兼容。
分类
根据运动方式分类
直线位移传感器
原理:
直线位移传感器的功能在于把直线机械位移量转换成电信号。为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。
lt直线位移传感器:直线位移传感器(2张)
⊙广泛应用于注塑、机床及机械加工等行业
⊙无限分辨率
⊙行程:50至900mm
⊙独立线性度:±0.05%
⊙位移速度达到:5m/s、10m/s可选
⊙工作温度:-30至 100℃
⊙多种电气连接方式
⊙保护等级:ip60(ip65可选)
角度位移传感器
德国balluff巴鲁夫传感器常见故障异常
根据材质分类
金属膜传感器、导电塑料传感器、光电式传感器、磁敏式传感器、金属玻璃铀传感器、绕线传感
电位器式位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。
霍耳式位移传感器它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移z=0时,霍耳电势≠0;b系统当z<2毫米时具有良好的线性,z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫米。图中n、s分别表示正、负磁极。霍耳式位移传感器的惯性小、频响高、工作可靠、寿命长,因此常用于将各种非电量转换成位移后再进行测量的场合。
光电式位移传感器它根据被测对象阻挡光通量的多少来测量对象的位移或几何尺寸。特点是属于非接触式测量,并可进行连续测量。光电式位移传感器常用于连续测量线材直径或在带材边缘位置控制系统中用作边缘位置传感器。
主要特性参数
标称阻值:电位器上面所标示的阻值。
重复精度:此参数越小越好.
分辨率:位移传感器所能反馈的最小位移数值.此参数越小越好.导电塑料位移传感器分辨率为无穷小.
允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电位器的精度。允许误差一般只要在
±20%以内就符合要求,因为一般位移传感器是以分压的方式来使用,具体电阻的大小对传感器的数据采集没有影响.
线性精度:直线性误差.此参数越小越好.
寿命:导电塑料位移传感器都在200万次以上.
常用传感器特性
导电塑料位移传感器
用特殊工艺将dap(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将dap电阻粉热塑压在绝缘基体的凹槽内形成的实心体作为电阻体。特点是:平滑性好、分辩力优异耐磨性好、寿命长、动噪声小、可靠性*、耐化学腐蚀。用于宇宙装置、导dan、飞机雷达天线的伺服系统等。
绕线位移传感器:是将康铜丝或镍铬合金丝作为电阻体,并把它绕在绝缘骨架上制成。绕线电位器特点是接触电阻小,精度高,温度系数小,其缺点是分辨力差,阻值偏低,高频特性差。主要用作分压器、变阻器、仪器中调零和工作点等。
金属玻璃铀位移传感器
用丝网印刷法按照一定图形,将金属玻璃铀电阻浆料涂覆在陶瓷基体上,经高温烧结而成。特点是:阻值范围宽,耐热性好,过载能力强,耐潮,耐磨等都很好,
是很有前途的电位器品种,缺点是接触电阻和电流噪声大。
金属膜位移传感器
金属膜电位器的电阻体可由合金膜、金属氧化膜、金属箔等分别组成。特点是分辨力高、耐高温、温度系数小、动噪声小、平滑性好。
磁敏式位移传感器
消除了机械接触,寿命长、可靠性高,缺点:对工作环境要求较高.
光电式位移传感器:
消除了机械接触,寿命长、可靠性高,缺点:数字信号输出,处理烦琐.
磁致伸缩式位移传感器
一、概述
磁致伸缩位移(液位)传感器,通过内部非接触式的测控技术精确地检测活动磁环的位置来测量被检测产品的实际位移值的;该传感器的高精度和高可靠性已被广泛应用于成千上万的实际案例中
由于作为确定位置的活动磁环和敏感元件并无直接接触,因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响。此外,传感器采用了高科技材料和*的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。
二、工作原理
磁致伸缩位移(液位)传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。
由于这个应变机械波脉冲信号在波导管内的传输时间和活动磁环与电子室之间的距离成正比,通过测量时间,就可以高度精确地确定这个距离。由于输出信号是一个真正的值,而不是比例的或放大处理的信号,所以不存在信号漂移或变值的情况,更无需定期重标。
高精度位移传感器
介绍两种高精度位移传感器:
1、kd2306高精度电涡流位移传感器
kd2306是kd2300的更新产品,采用轨导din式结构。本体系非常适合集成到oem设备和工业控制应用中。具备的分辨率和速度性能(0.1um分辨率,50khz高响应),满足各种实际需求,还可选择延长电缆、温度补偿等特殊需求。
可应用于精密测量金属材料的长度、宽度、高度、厚度、圆度等尺寸,位移,变形,振动等。
主要特点:
⒈高分辨率和高采样率;
⒉可自行调整零位、增益和线性;
⒊可选择延长电缆、温度补偿等功能;
⒋可测铁磁和非铁磁所有金属材料;
⒌具有多传感器同步功能;
⒍不受潮湿、灰尘的影响,对环境要求低。
2、smt9700埃米级高性能电涡流位移传感器
smt是一款专门为客户定制的oem产品,可测非导磁体和铁磁材料,有1、2或3通道可配电涡流探头。材料、线性、分辨率、带宽各种性能可自行优化,埃米级分辨率,符合ce和rohs标准,尺寸小巧,可配13种电涡流探头。
主要用于光学平台位置测量、半导体和光器件的研磨、半导体模板对齐系统、蒸镀系统、电子显微镜垂直轴定位、原子显微镜垂直轴定位、磁悬浮轴控制、部件研磨加工的精确定位、镜片控制、物质收缩测试测量、机械结构变形探测与测试。
主要特点:
1、尺寸小巧
2、埃米级分辨率
3、有1、2或3通道可配电涡流探头
4、可配13种电涡流探头
5、工作温度:0~70ºc(补偿范围15~55ºc)
6、符合ce和rohs标准
7、输出负载电流<20ma(有短路和过载保护)
8、供电电压:15~30v,<50ma(有容错保护、短路保护)
传感器市场发展前景
咨询公司intechnoconsulting的传感器市场报告显示,2008年*传感器市场容量为506亿美元,预计2010年*传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长较快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长较快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。
一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、mems(micro-electro-mechanicalsystems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在2007-2010年复合年增长率预计会超过25%。
目前,*的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与*的扩大。
数字激光位移传感器
激光位移传感器可精确非接触测量被测物体的位置、位移等变化,主要应用于检测物的位移、厚度、振动、距离、直径等几何量的测量。
按照测量原理,激光位移传感器原理分为激光三角测量法和激光回波分析法,激光三角测量法一般适用于高精度、短距离的测量,而激光回波分析法则用于远距离测量。
1、激光三角测量法原理(如下图所示):
半导体激光器①被镜片②聚焦到被测物体⑥。反射光被镜片③收集,投射到cmos阵列④上;信号处理器⑤通过三角函数计算阵列④上的光点位置得到距物体的距离。
原理图激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的ccd线性相机接收,根据不同的距离,ccd线性相机可以在不同的角度下“看见”这个光点。根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可独立设置检测窗口。
;真尚有拥有业界较为齐全的高精度激光三角测量传感器,最高精度可以达到1um,为高精度测量检测及测厚提供全面的j9九游真人游戏第一品牌的解决方案。
2、激光位移传感器采用回波分析原理来测量距离以达到一定程度的精度。传感器内部是由处理器单元、回波处理单元、激光发射器、激光接收器等部分组成。激光位移传感器通过激光发射器每秒发射一百万个激光脉冲到检测物并返回至接收器,处理器计算激光脉冲遇到检测物并返回至接收器所需的时间,以此计算出距离值,该输出值是将上千次的测量结果进行的平均输出。激光回波分析法适合于长距离检测,但测量精度相对于激光三角测量法要低。真尚有拥有的激光测距传感器,最远检测距离可达3000m
扫一扫 微信咨询
©2024 上海韬然工业自动化设备有限公司 j9游会真人游戏第一品牌的版权所有 j9九游会真人游戏第一的技术支持: sitemap.xml 总访问量:173657
主营:阿托斯atos电磁阀,力士乐rexroth柱塞泵,安沃驰aventics气动阀
微信扫一扫